Cambridge Judge Business School

Cambridge Centre for Risk Studies

Disaster Impact Assessment Methods for Space Weather Critical Infrastructure Failure: Input-Output approaches and beyond

Edward Oughton 2nd May 2016

US Space Weather Workshop

Centre for Risk Studies

Presentation Overview

- Disaster impact: *state-of-the-art*
- An overview of input-output methodologies
- Critical evaluation of techniques

Direct and Indirect Cascading Impacts

Risk Studies

Judge Business School

Approaches to Disaster Impact Assessment

	Input Output (IO)	Computable General Equilibrium (CGE)	Econometrics	Cost-Benefit Analysis
Se				
Advantages				
Adva				
ages				
Disadvantages				
Disa				

What is Input-Output Modelling?

Made fundamental contributions to the development of systems of national accounts and hence greatly improved the basis for empirical economic analysis

What is Input-Output Modelling?

A new method portraying both an entire economy and its fine structure by plotting the production of each industry against its consumption from every other

A Simplified Model of the Economy

General Structure of an Input Output Table

Purchases from intermediate demand

Sales to intermediate demand

Transaction matrix (Z)

Value Added (v)

Total input (x)

Sales to final demand (y)

Total output (x)

 $\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{y}$

x = Total output vector

I = Identity matrix

A = Technical coefficients matrix

y= Final demand

L = Leontief inverse

Centre for Risk Studies We want to find the reduction in output from space weather!

Methodological Sequence

Basic Transactions Table (Z matrix)

Units: Millions of USD

				PROD	UCERS AS	S CONSUM	ERS			FINA	L DEM	AND	
		Agric.	Mining	Metals	Electricity	Petrochem	Manuf.	Transp.	Services	House- holds	Govt.	Capital	Total Output
	Agric.						10						
	Mining						5						
ω ·	Metals						60						
PRODUCERS	Electricity						20						
RODL	Petrochem						30						
<u>a</u>	Manuf.	20	20	20	10	20	50	40	20	120	20	60	400
	Transp.						20						
	Services						40						
	Value Added						165						
	Total inputs						400						

Basic Transactions Table (Z matrix)

Units: Millions of USD

				PROD	UCERS AS	S CONSUM	ERS			FINA	L DEM	AND	
		Agric.	Mining	Metals	Electricity	Petrochem	Manuf.	Transp.	Services	House- holds	Govt.	Capital	Total Output
	Agric.	60	0	0	0	5	10	0	0	80	25	10	190
	Mining	5	5	20	30	30	5	0	0	5	10	5	115
ω	Metals	5	10	20	5	5	60	5	0	5	10	10	135
JCER	Electricity	10	10	30	10	30	20	20	10	40	10	0	190
PRODUCERS	Petrochem	20	10	10	50	40	30	30	5	30	10	5	240
<u> </u>	Manuf.	20	20	20	10	20	50	40	20	120	20	60	400
	Transp.	20	10	5	5	5	20	10	30	50	20	0	175
	Services	10	10	10	10	10	40	20	50	70	30	0	260
	Value Added	40	40	20	70	95	165	50	145 GDP = 625				
	Total inputs	190	115	135	190	240	400	175	260				

$$x_i = z_{i1} + \dots + z_{ij} + \dots + z_{in} + f_i = \sum_{j=1}^n z_{ij} + f_i$$

Direct Requirements Table (A Matrix)

Also known as the 'technical coefficients' matrix or input-output table

				PROD	UCERS AS	S CONSUM	ERS			FINA	L DEM	AND	
		Agric.	Mining	Metals	Electricity	Petrochem	Manuf.	Transp.	Services	House- holds	Govt.	Capital	Total Output
	Agric.						0.03						
	Mining						0.01						
W	Metals						0.15						
JCER	Electricity						0.05						
PRODUCERS	Petrochem						0.08	Pro	ductio	n rec	ipe		
۵	Manuf.	0.11	0.17	0.15	0.05	0.08	0.13	0.23	0.08				1
	Transp.						0.05						
	Services						0.10						
	Value Added						0.41						
	Total inputs						1						

Direct Requirements Table (A Matrix)

Also known as the 'technical coefficients' matrix

				PROD	UCERS AS	S CONSUM	ERS			FINA	L DEM	AND	
		Agric.	Mining	Metals	Electricity	Petrochem	Manuf.	Transp.	Services	House- holds	Govt.	Capital	Total Output
	Agric.	0.32	0.00	0.00	0.00	0.02	0.03	0.00	0.00				
	Mining	0.03	0.04	0.15	0.16	0.13	0.01	0.00	0.00				
ω	Metals	0.03	0.09	0.15	0.03	0.02	0.15	0.03	0.00				
PRODUCERS	Electricity	0.05	0.09	0.22	0.05	0.13	0.05	0.11	0.04				
RODL	Petrochem	0.11	0.09	0.07	0.26	0.17	0.08	0.17	0.02				
Δ.	Manuf.	0.11	0.17	0.15	0.05	0.08	0.13	0.23	0.08				
	Transp.	0.11	0.09	0.04	0.03	0.02	0.05	0.06	0.12				
	Services	0.05	0.09	0.07	0.05	0.04	0.10	0.11	0.19				
	Value Added	0.21	0.35	0.15	0.37	0.40	0.41	0.29	0.56				
	Total inputs	1	1	1	1	1	1	1	1				

agriculture	agriculture	agriculture	
mining	mining	mining	
metals	metals	metals	
electricity	electricity	electricity	households
petrochem	petrochem	petrochem \$120	Tiouseriolus
manufacturing	manufacturing	manufacturing *	
transport	transport	transport	
services	services	services	
production UNIVE AVE PF3 Centre for Risk Studies Judge Business School	production layer 2	production layer 1	final demand

Obtaining the Total Requirements Matrix (L)

The Leontief matrix (${\bf L}=({\bf I}-{\bf A})^{-1}$) uniquely summarises all direct and indirect network relationships in the economy

Total Requirements Matrix (L)

				PROD	UCERS AS	S CONSUM	ERS			FINA	L DEM	AND	
		Agric.	Mining	Metals	Electricity	Petrochem	Manuf.	Transp.	Services	House- holds	Govt.	Capital	Total Output
	Agric.						0.06						
	Mining						0.13						
ω ω	Metals						0.26						
JCER	Electricity						0.21						
PRODUCERS	Petrochem						0.26						
<u>a</u>	Manuf.	0.38	0.38	0.42	0.25	0.27	1.32	0.44	0.21				
	Transp.						0.14						
	Services						0.25						
	Value Added												
	Total inputs												

Total Requirements Matrix (L)

				PROD	UCERS AS	S CONSUM	ERS			FINA	L DEM	AND	
		Agric.	Mining	Metals	Electricity	Petrochem	Manuf.	Transp.	Services	House- holds	Govt.	Capital	Total Output
	Agric.	1.49	0.02	0.03	0.02	0.05	0.06	0.03	0.01				
	Mining	0.16	1.16	0.33	0.29	0.25	0.13	0.13	0.05				
ω ω	Metals	0.15	0.21	1.31	0.13	0.12	0.26	0.15	0.06				
JCER	Electricity	0.24	0.25	0.44	1.21	0.27	0.21	0.27	0.12				
PRODUCERS	Petrochem	0.39	0.30	0.37	0.48	1.38	0.26	0.40	0.14				
<u>a</u>	Manuf.	0.38	0.38	0.42	0.25	0.27	1.32	0.44	0.21				
	Transp.	0.25	0.18	0.16	0.12	0.11	0.14	1.16	0.19				
	Services	0.25	0.25	0.28	0.19	0.18	0.25	0.28	1.32				
	Value Added												
	Total inputs												

Calculating Total Loss Due to a Reduction in Final Demand (from a blackout)

Calculating Total Loss Due to a Reduction in Final Demand (from a blackout)

 \mathbf{x}^{new} is the degraded output (GDP) due to a reduction in final demand due to space weather

Methodological Sequence

Overview of Approaches

	Input Output	Computable General Equilibrium	Econometrics	Cost-Benefit Analysis
	Simplicity	Addresses market behaviours	Good forecasting	Simplicity
	Clear distinction between direct and indirect impacts	Can model a broad range of effects	Rigorous validation	Attempts to capture all costs and benefits
Advantages	Well suited to distributional analysis	Can examine distributional impacts	No major biases in estimating impacts	Applies expert knowledge and expertise to generate cost estimates
Adv	Excellent framework for data collection	Can model long-term recovery effects	Incorporates uncertainty	Model transparency
	Provides transparent view of the economy	Can model impacts across a range of macroeconomic variables	Does not assume market equilibrium	Single unit-measurement so costs and benefits can be easily compared
	Rigid due to linearity	Intended for long-run equilibrium analysis	Not well suited to modelling rare events	Does not account for economic multipliers
Se	Ignores agent behavioural response to disaster	Usually provides over optimistic results because of flexibility response	Difficult to obtain disaggregated regional data	Subjective costs and complications
Disadvantages	Inadequately deals with monetary interventions	No explicit distinction between direct and indirect effects	No explicit distinction between direct and indirect effects	Single unit-measurement assumes all things can be easily compared
Disa	Relies on market-equilibrium while disasters represent disequilibrium	Assumes all agents optimise	Model is based on historical experience which might not hold in the future	
	Characterised as providing over pessimistic results	Assumes agents have perfect information	Inadequately allows for economic multiplier effects	

Overview of Approaches

	Input Output	Computable General Equilibrium	Econometrics	Cost-Benefit Analysis
	Simplicity	Addresses market behaviours	Good forecasting	Simplicity
10	Clear distinction between direct and indirect impacts	Can model a broad range of effects	Rigorous validation	Attempts to capture all costs and benefits
Advantages	Well suited to distributional analysis	Can examine distributional impacts	No major biases in estimating impacts	Applies expert knowledge and expertise to generate cost estimates
Adv	Excellent framework for data collection	Can model long-term recovery effects	Incorporates uncertainty	Model transparency
	Provides transparent view of the economy	Can model impacts across a range of macroeconomic variables	Does not assume market equilibrium	Single unit-measurement so costs and benefits can be easily compared
	Rigid due to linearity	Intended for long-run equilibrium analysis	Not well suited to modelling rare events	Does not account for economic multipliers
Sel	Ignores agent behavioural response to disaster	Usually provides over optimistic results because of flexibility response	Difficult to obtain disaggregated regional data	Subjective costs and complications
Disadvantages	Inadequately deals with monetary interventions	No explicit distinction between direct and indirect effects	No explicit distinction between direct and indirect effects	Single unit-measurement assumes all things can be easily compared
Disa	Relies on market-equilibrium while disasters represent disequilibrium	Assumes all agents optimise	Model is based on historical experience which might not hold in the future	
	Characterised as providing over pessimistic results	Assumes agents have perfect information	Inadequately allows for economic multiplier effects	

Overview of Approaches

	Input Output	Computable General Equilibrium	Econometrics	Cost-Benefit Analysis
	Simplicity	Addresses market behaviours	Good forecasting	Simplicity
	Clear distinction between direct and indirect impacts	Can model a broad range of effects	Rigorous validation	Attempts to capture all costs and benefits
Advantages	Well suited to distributional analysis	Can examine distributional impacts	No major biases in estimating impacts	Applies expert knowledge and expertise to generate cost estimates
Adv	Excellent framework for data collection	Can model long-term recovery effects	Incorporates uncertainty	Model transparency
	Provides transparent view of the economy	Can model impacts across a range of macroeconomic variables	Does not assume market equilibrium	Single unit-measurement so costs and benefits can be easily compared
	Rigid due to linearity	Intended for long-run equilibrium analysis	Not well suited to modelling rare events	Does not account for economic multipliers
səl	Ignores agent behavioural response to disaster	Usually provides over optimistic results because of flexibility response	Difficult to obtain disaggregated regional data	Subjective costs and complications
Disadvantages	Inadequately deals with monetary interventions	No explicit distinction between direct and indirect effects	No explicit distinction between direct and indirect effects	Single unit-measurement assumes all things can be easily compared
Disa	Relies on market-equilibrium while disasters represent disequilibrium	Assumes all agents optimise	Model is based on historical experience which might not hold in the future	
	Characterised as providing over pessimistic results	Assumes agents have perfect information	Inadequately allows for economic multiplier effects	

Conclusion

- 1. An illustrated example of how to calculate the GDP impact of space weather using input-output
- 2. There are some distinct benefits of IO:
 - Separation of direct and indirect impacts
 - Transparent and simple
 - Can be integrated with other models
- IO does not include the behavioural responses to a disaster

Centre for **Risk Studies**

E.oughton@jbs.cam.ac.uk